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Abstract: - Fin spacing is chosen to maximize heat transmission rate. Maximization is attained as a compromise between two 
opposite trends: fin surface maximization and adduction coefficient maximization. In this paper a new relation for the 
optimum spacing between rectangular fins is proposed. The relation was obtained keeping into account non-unitary fin 
efficiency. Demonstration is achieved by a theoretical approach which regards only rectangular fins. Results were verified 
also by numerical simulations. An original method to evaluate radiative heat flux is proposed too. The method allows to 
obtain an original simple radiative heat flux equation. Numerical simulations and theoretical evaluations show that the 
proposed convective flux optimization method and the model for radiative flux estimation are respectively suitable for high 
length and high temperature rectangular fins. 
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1 Introduction 
Electronic systems (power electronics, CPU cooling) 
performances and reliability depend on working 
temperature, thus cooling plays a fundamental role which is 
becoming more and more important because of device 
miniaturization. Fin arrays are one of the most common 
system for devices cooling. Fin spacing is chosen to 
maximize heat transmission rate. Maximization is attained 
as a compromise between two opposite trends: 

- fin surface maximisation; 
- adduction coefficient maximisation. 

     Fin surface increase by diminishing spacing; adduction 
coefficient increase by increasing spacing. Optimal fin 
spacing has been found assuming the following 
approximations: 

a) convection coefficient is uniform along the fin [1]; 
b) radiative heat transfer rate is negligible; 
c) fin efficiency is assumed unitary. 

     In this paper it is demonstrated that spacing may be 
furthermore optimized if fin efficiency is kept into account; 
thus only approximations a) and b) are still taken into 
account. Demonstration is achieved by a theoretical 
approach and by numerical simulations. Optimized spacing 
allows to decrease thermal resistance maintaining the same 
fin system dimension. This result may be important for 
electronic applications where high heat transfer rates are 
produced by very small devices. 
     Furthermore, a new method for fin radiative heat transfer 
evaluation is proposed. The method proposes a uniform 
temperature fin model. Model result depends on a 
calibrating parameter value. It is demonstrated that the 
calibrating parameter is constant for any fin configuration. 
Simulations validated theoretical findings. 

 
2 Optimal Rectangular Fin Spacing 
Heat transfer rate transferred from an hot surface (a fin 
system) to the surrounding environment is given by two 
contributions: 
 

rc qqq +=  (1) 
 
     When temperature difference is small enough the 
radiation term qr may be neglected [1]. In order to increase 
heat transfer rate fin surface and convection coefficient h 
may be both increased. A generic thin fin temperature 
distribution is ruled by the following relation if only 
convective heat transfer rate is considered: 
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     Thus, heat transfer rate is: 
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     Fin efficiency is defined as it follows: 
 

)TT(Sh

Q

Q

Q

p

d

id

d

∞−⋅⋅
==η  (4) 



 
     On such a condition, fin heat flux rate may be found by 
the following relation: 
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     When a rectangular fin is characterized by b much 
greater than t, it may be written: 
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     Furthermore, fin efficiency is well approximated by the 
following relation [2]: 
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     A rectangular fin system is constituted by an array of 
cavities as it is shown in Fig.1. 
 

Fig.1: Rectangular fin system scheme. 
 
     On natural convection, convective coefficient depends 
on the dimension d of each cavity according to the 
following laws [3, 4]: 
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     Eq. (8) states that convection coefficient h increase when 
d increase. Anyway, global heat transfer rate increases by 

increasing total fin surface which means to increase the 
number of cavity corresponding to a reduction of d. 
     In order to maximize convective heat transfer it is 
needed to get an optimal fin spacing. Let introduce the 
following statements: 
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Eq. (10) yields that: 
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     For obtaining optimal spacing it is assumed in literature 
[5] that the fin efficiency is 1; such an assumption allows to 
write fin convective heat transfer rate as follows: 
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     It may be shown that maximum value of qc is attained 
when [6]: 
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3 Further Convective Heat Transfer 

Optimization 
Relation (13) was found by considering a unitary fin 
efficiency. If efficiency is introduced a further optimization 
of fin spacing may be attained. Fin efficiency can be 
conveniently approximated by the following relation: 
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     It may be shown that Eq. (14) approximates fin 
efficiency better than Taylor series truncated to the third 
term. Error committed using Eq. (14) on behalf of Eq. (7) is 
below 10% when mL is below 1.5 (see appendix A). 
It may be simply shown that convective fin heat rate is: 
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     Eq. (15) may be rewritten introducing equations (14) and 
(8) as follows: 
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     Maximizing qc means to solve the following equation in 
terms of y: 
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     It yields to the following parabolic equation on variable 
u = y6: 
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     Thus, optimal spacing is given by: 
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4 Calculation example 
Heat flux rate of two rectangular CPU dissipater were 
compared; dissipaters fin spacing was determined by two 
different methods: 

A) unitary fin efficiency method; 
B) the proposed “true fin efficiency” method (Eq. 

(14)). 
     The following geometrical and thermal parameter were 
considered: 
 
∆T = 80 K; 
λw = 100 [W m-1 K]; 
λa = 0,0261 [W m-1 K]; 
ν2 = 2,531x10-10 [m4 s-2]; 
gβ = 0,027 [m s-2 K-1]; 
Pr = 0,701 (biatomic gas); 
t = 0,001 m; 
L = 0,14 m; 
b = 0,08 m; 
z = 0,0937 m. 
 
     In Fig.2 convective flux versus fin spacing is shown. The 
radiative heat transfer rate is neglected with respect to 
convective heat transfer rate given by Eq. (15) for the 
investigated dissipater working temperatures. Therefore, fin 

heat transfer rate may be assumed equal to the convective 
one. 
     Fin spacing obtained by A) method is: 
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     By Eq. (19), fin optimal spacing by B) method is: 
 

mm,d B 434=  (21) 
 
     The optimal spacing dB produces a 17 cavities dissipater; 
on the contrary, fin spacing attained by A) unitary 
efficiency method yields 15 cavities. 
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Fig.2: convective heat flux rate (W) given by Eq. (15) vs. 
fin spacing (m) for the investigated dissipater. 
 
     Heat flux increase due to B) method fin spacing 
optimization can be calculated by the following ratio: 
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     Using fin spacing values in Eq. (20) and (21), ratio (22) 
results: 
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     The proposed fin spacing leads to an approximately 3% 
heat flux increase. Heat flux decreases by using a fin 
spacing smaller and greater than the one given by Eq. (21). 
     A numerical simulation was conducted in order to 
validate the theoretical results. Finite volume models 
relative to A), B) fins were created [7-10]; each model were 
meshed into approximately 500000 tetrahedral elements. 
Mesh spacing was chosen equal to 0.5 mm near the fin and 
at the fin interior. Mesh spacing was increased in the air 
zone far from the fin one. The following boundary 



conditions were used: 
- fin bottom wall temperature is 348 K. 
- A pressure outlet condition was imposed for the air 

volume walls. 
     Simulation results showed an approximately 3.5% 
convective flux increase when the proposed B) method is 
used with respect to A) method. Heat fluxes values (see 
Table 1) are very close to the ones obtained by theoretical 
calculations. Also heat flux increase is very close to the one 
obtained by Eq. (22). Therefore, simulation results validate 
to have obtained better performances by B) method with 
respect to A) one. Simulation results confirm that dB 
represents the optimal fin spacing for the investigated 
dissipater. 
 
Table 1: comparison between convective heat fluxes 
obtained by theoretical calculations and simulations for the 
investigated rectangular fins. 

Global Heat Fluxes (W) 
Method 

Theoretical Evaluation Simulation 

A) unitary fin 
efficiency 

114.5 115.3 

B) true fin 
efficiency 

118.8 119.4 

 
 
5 Original radiative flux evaluation method 
Radiative heat transfer rate transmitted by a rectangular fin 
system is negligible for common working temperatures. 
Radiative heat flux may be relevant only for high working 
temperature and, as further shown, for particular 
geometrical configurations. 
     It is here proposed a general method for evaluating fins 
radiative heat flux when non-uniform walls temperature is 
considered. 
     The method may be used for fin systems when 
temperature is as high as radiative flux becomes non-
negligible and for any other applications where rectangular 
cavities with non-uniform temperature walls are involved. 
     A rectangular fin is constituted by an array of cavities 
which emit heat flux to the external bodies. Global radiative 
flux transmitted by a rectangular fin system is the sum of 
single cavity radiative fluxes [11]. Single cavity radiative 
flux is found by adopting the following hypotheses: 

a) cavity walls are perfectly diffusive gray bodies; 
b) external bodies are modeled like a wall which 

completely closes each cavity; 
c) external bodies surface temperature Tex is uniform; 
d) external bodies absorption coefficient is unitary; 
e) wall radiances are uniforms. 

     Some different cases were investigated: 
1. single wall temperature cavity (see Fig.3-a); 
2. uniform wall temperature cavity, lateral walls 

temperature equal to the average temperature 

between air and fin bottom wall temperature (see 
Fig.3-b); 

3. variable wall temperature cavity (see Fig.3-c); 
4. uniform wall temperature model for variable wall 

temperature cavity (see Fig.3-d). 
 
 
5.1 Case 1: Single wall temperature cavity 
Hypotheses a) and e) allow to determine the cavity walls 
and external bodies radiances by solving, with respect to G1 
and G2, the following two variables-two equations system: 
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Fig.3: Single cavity temperature schemes. 

 
     The system may be solved by evaluating the following 
matrix: 
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     Cavity wall temperature is assumed higher than external 
bodies one. Thus, heat flux transmitted by a single cavity to 
external bodies is given by: 
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     Equations (25) and (26) are calculated by observing that: 
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     Eq. (26) may be written as follows by means of algebraic 
simplifications: 
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     Cavity wall and external bodies areas are given by the 
following relations (see Fig.3-a): 
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     Thus, Eq. (27) may be rewritten as follows: 
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     The number n of cavities may be estimated as: 
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     Thus, total fin system radiative flux qr is given by the 
following equation: 
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      Eq. (30) is as monotonic descending function of variable 
d into [0, z] range; it may be simply shown that maximum 
radiative heat flux is transmitted when d = 0. This absurd 
result is caused by the assumption that cavity wall 
temperature is considered uniform.  
 
 
5.2 Case 2: uniform wall temperature cavity 
In order to evaluate fin radiative heat flux, the walls 
temperature distribution may be considered uniform but not 
the same for each fin wall. 

     Referring to Fig.3-b, temperature distribution of 1 and 3 
walls was calculated as the average of the air temperature T4 
and the bottom wall temperature T2. 
Thus, 
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     Each view factor must be calculated [12, 13]; the 
problem may be exactly solved. Radiative heat flux 
transmitted by the single cavity to the external body is given 
by: 
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     Radiances G1, G2, G3 and G4 may be calculated by 
means of the following relation: 
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5.3 Case 3: Variable wall temperature cavity 
A not uniform cavity wall temperature distribution is here 
proposed. 
     According to the reference system of Fig.3-c, cavity wall 
temperature distribution is assumed to be governed by the 
following equation: 
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     The s coefficient may be found by means of the 
following condition [14]: 
 









=

L

2

T
T

ln
L
1s  (37) 

 
where TL is obtained using Eq. (2) [1]: 
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     Assuming cavity walls to be a perfect diffusive gray 
body, radiative energy emitted by lateral wall 1 and 3 per 
unit area per unit solid angle is given by (see Fig.3-c): 
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Furthermore, radiative energy emitted by cavity base wall 
per unit area per unit solid angle is given by: 
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Equations (39) and (40) allow to introduce the following 
modified view factors which are referred to a not uniform 
temperature surfaces: 
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with F32=F12; F34=F14; F13=F31. 
     The remaining six view factor are calculated by 
traditional method [15]; relations which involve view 
factors are the followings: 
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     Radiative heat flux may be determined as well as for 
uniform temperature cavity; radiative heat flux transmitted 
by cavity to external bodies is given by Eq. (34). Radiances 
G1, G2, G3 and G4 may be calculated by means of the Eq. 
(35); J1, J2, J3 and J4 are obtained as follows: 
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     Fin system radiative heat flux may be evaluated as the 
sum of each single cavity fluxes: 
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     A comparison among the radiative heat fluxes obtained 
in cases 1-3 was carried out. A rectangular fin example is 
proposed where some geometrical and thermal parameters 
were varied to test each calculation method on different 
conditions. 
     Fin geometrical and thermal parameters are the 
following ones (Example a): 
 
T2 = 378 [K]; 
T4 = 298 [K]; 
h = 10 [W m-2 K-1]; 
λ = 200 [W m-1 K-1]; 
z = 0.127 [m]; 
b = 0.075 [m]; 
L = 0.02 [m]; 
d = 0.00885 [m]; 
t = 0.0016 [m]; 
n = 12. 
 
     Four different conditions were obtained by changing 
respectively the following geometrical or thermal 
parameter: 
 
Example b: d = 0.01094 m, n = 10; 
Example c: T2 = 348 K; 
Example d: b = 0.12 m; 
Example e: L = 0.03 m. 
 
     It may be observed in Table 2 that each calculation 
method (1, 2, 3) produces a quite different heat flux rate; 
this is due to the uniform wall temperature assumption for 
case 1 and 2 with respect to non-uniform wall temperature 
assumption for case 3. 
 
Table 2: global radiative heat flux evaluation 

 Calculation method 
Total fin heat

flux [W] Case 1 Case 2 Case 3 
Numerical
simulation

a 4.440 2.316 2.941 2.976 
b 4.410 2.400 3.043 3.459 
c 2.400 1.308 1.642 1.704 
d 7.308 3.828 4.894 5.143 
e 4.560 2.220 2.065 2.158 

 
     Thus a numerical simulation was carried out to compare 
calculation method. Fin was modeled by a 100000 
tetrahedral elements mesh. Mesh spacing was chosen equal 
to 0.5 mm near the fin and at the fin interior. Mesh spacing 
was increased away from the fin. The following boundary 
conditions were used: 

- fin bottom wall temperature equal to 378 K (348 K 
for Example c); 



- a pressure outlet condition was imposed for the air 
volume walls. 

     Numerical results demonstrate that only non-uniform 
model gives viable radiative flux predictions which are very 
close to the numerical ones for each fin configuration. 
 
 
5.4 Case 4: Uniform wall temperature model for 
variable wall temperature cavity 
Difficult and huge calculations are required to determine 
radiative heat flux by non-uniform walls temperature Case 3 
model. However it may be observed that a simplified 
formula may be introduced: 
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where: 
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     In Eq. (47) Cc=0.34 is a calibrating not-dimensional 
parameter which has been determined by equalizing Eq. 
(45) and Eq. (34). Once Cc is known, it may be shown that 
Eq. (45) gives, for any fin configuration, a radiative flux 
which is very close to the one obtained by Case 3 method. 
     Furthermore, it may be observed that Eq. (45) represents 
a uniform temperature cavity model of the non-uniform 
temperature cavity. The entire fin system radiative flux rate 
is given by the following enclosed form relation: 
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     When b>>d, Eq. (47) becomes: 
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     Thus, Eq. (48) may be rewritten as follows: 
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where 
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     By Eq. (44) and Eq. (50) the fin radiative heat flux may 
be evaluated in a simplified way with respect to method 3 
because a negligible error is introduced. 
Radiative heat flux transmitted by the fin system described 
in paragraph 4 is negligible with respect to convective heat 
flux as may be demonstrated by Eq. (50). However radiative 
heat flux transmitted by a fin system must be taken into 
account for high working temperature or for peculiar fin 
geometrical configuration.  
 
 
6   Conclusion 
In this paper a new relation for rectangular fins array 
optimum spacing is proposed. The relation has been 
obtained keeping into account non-unitary fin efficiency. 
     The difference between heat dissipation rate calculated 
by literature method (unitary fin efficiency) and heat 
dissipation rate evaluated by the proposed method increases 
as fin height grows. Application on CPU dissipater shows 
heat flux increase up to 3%.  
     Radiative heat flux transmitted by a rectangular fin 
system is negligible for common working temperatures. 
However, radiative heat flux must be considered for high fin 
temperature and for particular geometrical configurations.  
     It is here proposed an original method to determine 
radiative heat flux when a non-uniform walls temperature 
fin array is considered which produces very accurate results. 
     Furthermore a simple relation is also proposed which can 
be used for fin arrays and for any other applications where 
cavity radiation phenomena are involved; the relation was 
validated by numerical simulations. 
 
 
7   Appendix A: Fin Efficiency Approximation 
In paragraph 1 a fin efficiency approximation is proposed to 
ease optimal fin spacing calculation. Considering the 
dimensions sketched in Fig.1, fin efficiency is expressed by 
the following relation: 
 

mL
)mL(tgh

=η  (52) 

 
     Using Eq. (52) Taylor series expansion, truncated to the 
third component, fin efficiency can be approximated as 
follows: 



 

2

2
11

1

)mL(+
=η  (53) 

 
     Comparing Equations (52) and (53) behaviors, it is 
possible to show (see Fig.4) that a better efficiency 
approximation can be obtained by means of the following 
relation [2]: 
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     Analyzing Fig. 4, estimation error using Eq.(54) instead 
of (52) is less than 10% when mL value is less than 1.5. 
 

 
Fig.4: Comparison between behaviors of true fin efficiency 
and its approximations. 
 
 
8   Symbols 

Symbol Units Description 
A  m2 single fin bar final surface area 
Ai m2 i-th fin wall area 
ai adimensional i-th fin wall absorption coefficient 
αi rad i-th fin wall emission angle  

αij rad i-th fin wall emission angle 
towards j-th wall 

b m fin length 
β K-1 thermal dilatation coefficient 

Cc adimensional fin radiative model calibration 
parameter 

d m single fin cavity width 

dA m optimal fin spacing obtained by 
using a unitary fin efficiency 

dB m optimal fin spacing obtained with 
fin efficiency given by Eq. (13) 

dott m optimal fin spacing 

ds m 

a fin spacing smaller than the one 
obtained  

by the proposed optimization 
method 

∆T K difference between fin and air 
temperatures 

Fij adimensional view factor from i-th fin wall 
to j-th wall 

Gi W⋅m-2 i-th fin wall radiance 
g m⋅s-2 gravity acceleration 

γ adimensional ratio between fin length and 
fin spacing 

h W⋅m-2⋅K-1 fin-air convection coefficient 
η adimensional fin efficiency 
Ji W⋅m-2 i-th fin wall integral irradiance 

Jn,i W⋅m-2 i-th fin wall integral irradiance 
emitted in normal direction 

L m fin height 
λ W⋅m-1⋅K-1 fin thermal conductivity 
λa W⋅m-1⋅K-1 air thermal conductivity 

m m-1 fin temperature distribution 
parameter 

n adimensional number of fin cavities 
Nu adimensional Nusselt number 
ν m2⋅s-1 cinematic viscosity 
P m single fin bar perimeter 
Pr adimensional Prandtl number 
Q W true exchanged heat flux  
Qd W single fin bar heat transfer rate 
Qid W maximum exchanged heat flux 
q W heat flux 

qA W convective heat flux obtained with 
known optimization method 

qB W convective heat flux obtained with 
the proposed optimization method 

qc W convective heat flux 

qcav W radiative heat flux emitted by a 
single fin cavity 

qr W radiative heat flux 
qradi W⋅m-2 radiative heat flux relative to wall i

qs W 
convective heat flux obtained with 

a fin spacing smaller than the 
optimal one 

R adimensional Rayleigh number referred to b 

Rij m distance between 
i-th and j-th fin walls 

Ra adimensional Rayleigh number 
Ra’ adimensional modified Rayleigh number 
r1 adimensional i-th fin wall reflection coefficient 
S m2 single fin bar area 

s m-1 fin logarithmic temperature 
distribution parameter 

σ0 W⋅m-2⋅K-4 Stefan-Boltzmann constant 
T K fin temperature distribution 
T0 K fin walls uniform temperature 
Ti K fin i-th wall temperature 
T4 K air wall 4 temperature 
Tex

 K air wall temperature 

(24) 
(25) 

(26) 



TL K fin upper wall temperature 
Tp K fin wall temperature 

Ts K fin cavity surface temperature 
when x=0 

T∞ K air temperature 
t m single fin bar width 
u adimensional substitution variable 

uott adimensional optimum u value 
v m fin base surface thickness 
x m portion of fin height 

y adimensional division between fin cavity width 
and fin length 

z m fin width 
 
 
References: 
[1] G.Guglielmini, C.Pisoni, Elementi di trasmissione del 

Calore, Ed.Veschi, 1990. 
[2] Mastrullo et al., Elementi di trasmissione del calore, 

cap.5, 1980. 
[3] A. Bejan, S.W. Lee, Optimal Geometry of Convection 

Cooled Electronic Packages, Cooling Tecnology for 
Electronic Equipment, Ed. Win Aung, 1988. 

[4] A. Bejan, Convection Heat Transfer, Wiley, New 
York. 

[5] Y. Jalura, Natural Convective Cooling of Electronic 
Equipment, Proceedings of NATO Conference on 
Cooling of Electronic System, Smirne-Turchia, June 
1993. 

[6] Bar-Cohen, Rohsenow, Thermally Optimum Spacing 
of Vertical, Natural Convection Cooled, Parallel 
Plates, J. Heat Transfer, Vol. 106, pp.116-123. 

[7] Fluent Incorporated, Fluent5 User Guide, 1998. 
[8] Ferziger J.H., Peric M., Computational Methods for 

Fluid Dynamics, Springer, Berlin. 1996. 
[9] Patankar S.V., Numerical Heat Transfer and Fluid 

Flow, Hemisphere Publishing Corp., D.C., 1980. 
[10] Comini G., Fondamenti di Termofluidodinamica 

Computazionale, SGE Editoriali Padova, 2001. 
[11] Rohsenow W.M., Hartnett J.P., Ganic E.N., Handbook 

of Heat Transfer Fundamentals, McGraw-Hill Book 
Company, 1985. 

[12] Hahne E., Grigull U., Formfactor und 
Formeweiderstand der Stationarem 
Mehrdimensionalen Warmeleitung, Int. J. Heat & 
Mass. Transfer, Vol. 18, pp. 751-767, 1975, 

[13] Modest M., Radiative Heat Transfer, Mc Graw Hill 
Book Company, Inc. New York, NY, 1992. 

[14] Lydersen A.L., Fluid Flow and Heat Transfer, John 
Wiley & Sons, Chichester, 1979. 

[15] Holman J.P., Heat Transfer, SUI Metric Edition, 
McGraw-Hill Book Company, 1989. 


